### In Search of Lipid Rafts: Evidence of Phospholipid/Cholesterol Complexes

#### Ka Yee C. Lee

Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute The University of Chicago

> CNLS Conference Santa Fe, New Mexico May 21, 2007

### Interactions at Lipid Interfaces

Human Lung Surfactant

**Antimicrobial Peptides** 

Alzheimer's  $A\beta$  Peptides

**Poloxamers as Membrane Sealants** 

Phospholipid/Cholesterol Interactions

### Interactions at Lipid Interfaces



# Background

- 1972: Fluid Mosaic Model
- "Lipid raft": enriched in cholesterol and sphingolipids Important in signal transduction
- Lengthscale: predicted ~100 nm
- Model systems: GUVs Monolayers
- Thermodynamic phases?
- Dynamic structures?



### Outline

- Background & Motivation
- Can phospholipid/cholesterol interaction be disrupted?
   Phase diagrams in the presence of displacing agent
   Cholesterol desorption by cyclodextrin in monolayers
- Ordering of phospholipid/cholesterol systems
   Grazing incidence X-ray diffraction and X-ray reflectivity results
- Evidence of displacement in live cell systems
   "Inhibiting" and "promoting" sterols on cholesterol activity in RBC
- Conclusions



### Postulation of Complex Formation

- McConnell postulates the existence of lipid-cholesterol complexes in model membranes
- Alpha region: region of low cholesterol concentration; complex + lipid (X + P)

*Beta region:* region of high cholesterol concentration; complex + cholesterol (X + C)

*Cusp:* stoichiometric complex between phospholipid & cholesterol



A. Radhakrishnan and H.M. McConnell. Biochemistry 39 (2000), pp. 8119-8124

### Active (Free) Cholesterol Monomers

Uptake of cholesterol by beta-cyclodextrin ( $\beta$ CD)



A. Radhakrishnan and H.M. McConnell. Biochemistry 39 (2000), pp. 8119-8124

### Cholesterol Traffic



# Biological Motivation: Cholesterol Homeostasis

- Lange *et al.*: n-octanol can increase cholesterol transfer and ER pool size
- Hypothesis: displacement cholesterol from plasma membrane by n-octanol from the complex, thus freeing up cholesterol monomers
- Understand the J-curve response observed in biological systems



Lange Y, Ye J, Rigney M, Steck TL. (1999) J Lipid Res, 40, 2264-70; also PNAS (2004)



- Hypothesis:
  - cholesterol forms **complexes** with phospholipids
- Implications:
  - Cholesterol can exist in two different states:
     bound cholesterol (low activity)
     free cholesterol (high activity)
  - Other molecules that can form tighter complexes with phospholipids can be **displacing agents**, freeing cholesterol from its bound state
- Mechanistic Model
  - cholesterol activity modulation by specific displacing agents.

# Lipid Systems



### Four Different Approaches

- Phase diagrams
- Cholesterol desorption by beta-cyclodextrin (CD)
- X-ray diffraction and x-ray reflectivity
- Effect of "inhibiting" and "promoting" sterols on cholesterol activity in RBC

### Four Different Approaches

- Phase diagrams
- Cholesterol desorption by cyclodextrin (CD)
- X-ray diffraction and x-ray reflectivity
- Effect of "inhibiting" and "promoting" sterols on cholesterol activity in RBC

## Experimental Techniques



 $\Pi = \gamma_0 - \gamma$ A = Area per molecule



#### Fluorescence Langmuir Surface Balance

### Phase Diagram: Point Shifting



No liquid-liquid immiscibility observed

3. C16:DMPC

### Cholesterol fixed at different mole fractions



| Open square    |
|----------------|
| Filled circle  |
| Filled diamond |
| Open triangle  |
| Open circle    |

0% DChol 10% DChol 15% DChol 20% DChol 25% DChol

### Conclusions from Phase Diagram Study

- Phase diagrams in the presence of displacing agent is equivalent to ones with just pure cholesterol, even at low cholesterol content
- Displacement of cholesterol from its association with phospholipid by alcohol
- The displacement seems to be 1 C16:1 DChol, since we observe identical phase diagrams
- Does displacement results in the release of free cholesterol?

### Four Different Approaches

- Phase diagrams
- Cholesterol desorption by cyclodextrin (CD)
- X-ray diffraction and x-ray reflectivity
- Effect of "inhibiting" and "promoting" sterols on cholesterol activity in RBC

### Cholesterol Transfer to CD



### Cholesterol Transfer to CD



### Selectivity of Cyclodextrin



- β-CD removes sterols from monolayers
- Desorption rate of cholesterol to CD is much greater than the rates for DMPC or hexadecanol (C16)

- Monolayer Compression memb. equib. Π≈28 mN/m (20~35 mN/m)
- 2. Beta-CD in subphase
- 3. Area Contraction

Cholesterol removal by Cyclodextrin in Cholestrol:DMPC monolayers



# Cyclodextrin on System 1: DChol:DMPC



# Cyclodextrin on System 2 20% DChol: C16:DMPC



- Ternary mixtures displays similar behavior to βCD as binary mixtures of DChol:DMPC
- Even with equally low cholesterol content we see changes in desorption rates indicating that alcohol is displacing cholesterol
- Compare **black** and **red** curves

 50:50
 C16:DMPC

 20:30:50
 DChol:C16:DMPC

## Cyclodextrin II: point shifting



### Cholesterol Transfer to CD



### Cholesterol Fixed at Different Mole Fractions



| Filled squares  |
|-----------------|
| Open Star       |
| Open circle     |
| Open square     |
| Filled triangle |
| Filled star     |
| Filled diamond  |
| Filled circle   |
| Open tirangle   |
| Open square     |
|                 |

DMPC DChol HD DMPC/DChol DMPC/HD HD/DChol Ternary/10%DChol Ternary/15%DChol Ternary/20%DChol Ternary/25%DChol Final Equilibrium Area for DMPC/DChol Mixtures



MR, YL, TS, KYCL, Biophys. J., in press

### Conclusions from CD Desorption Study

- Cholesterol can exist in two states of low and high chemical potential/activity/fugacity
- In the presence of displacing agent cholesterol activity is increased

### Four Different Approaches

- Phase diagrams
- Cholesterol desorption by cyclodextrin (CD)
- X-ray diffraction and x-ray reflectivity
- Effect of "inhibiting" and "promoting" sterols on cholesterol activity in RBC



### XR Data on Mixtures



- DChol intercalates into acyl chain region (10 Å) this layer is also responsible for Bragg scattering observed in GIXD)
- Reduces the tilt of phospholipids (cholesterol condensation effects)

### Grazing Incidence X-ray Diffraction (GIXD)









q<sub>xy</sub> ~ 1 / d-spacing

#### FWHM ~ 1 / coh. length

### GIXD of Pure Components



|                    | d-spacing(s)<br>(Å) | Coherence<br>Lengths (Å)<br>L11, L10 01 | Integrated<br>Intensity |
|--------------------|---------------------|-----------------------------------------|-------------------------|
| SM (35 mN/m)       | 4.29, 4.61          | 173,40                                  | 0.5                     |
| DChol (35<br>mN/m) | 5.72                | 74.6                                    | 1.5                     |
| DPPC (30 mN/m)     | 4.29, 4.56          | 242, 47                                 | 1.3                     |

# Pressure Dependence of Phospholipid Systems



d-spacing, scattering intensity, coherence length (memory of crystallinity) are pressure-dependent

### Effects of C16 on Lipid Structure



d-spacing, scattering intensity, coherence length (memory of crystallinity) are pressure-dependent
C16 induces lipid packing at a lower pressure

# Presence of DChol Leads to Very Different Scattering Behavior



- coherence length ~ 22  $\mathring{A}^{xy}(\mathring{A}^{-1})$
- d-spacing  $\neq$  f (surface pressure)
- coherence length  $\neq$  f (surface pressure)
- amt of scattering entities  $\neq$  f (surface pressure)
- DChol = DHC

#### CE, MKR, JM, KK, KYCL, BJ 91 (2006) L01-L03

|    | 1:1 DPPC:DChol |                     |                      |  |  |
|----|----------------|---------------------|----------------------|--|--|
| п  | d spacing      | coherence<br>length | integrated intensity |  |  |
| 25 | 4.79           | 22.37               | 1.1                  |  |  |
| 30 | 4.79           | 22.61               | 1.2                  |  |  |
| 35 | 4.75           | 21.46               | 1.2                  |  |  |
| 40 | 4.73           | 21.01               | 1.4                  |  |  |

#### 1:1 SM:DChol

| Pressure | d spacing | coherence<br>length | integrated<br>intesnity |
|----------|-----------|---------------------|-------------------------|
| 25       | 4.86      | 24.39               | 1.0                     |
| 30       | 4.85      | 23.61               | 1.0                     |
| 35       | 4.84      | 23.38               | 1.1                     |
| 40       | 4.80      | 22.25               | 1.3                     |

#### 1:1:1 SM:DPPC:DChol

| Pressure | d spacing | coherence<br>length | integrated intesnity |
|----------|-----------|---------------------|----------------------|
| 25       | 4.70      | 22.94               | 1.0                  |
| 35       | 4.60      | 21.85               | 1.0                  |
| 40       | 4.62      | 23.03               | 1.0                  |

# Structures Exist Below and Above Liquid-Liquid Immiscibility Line



# Coherence Dependence on Chol Content in DPPC:Chol Systems



# Vegard's Law



MR, JM, KK, KYCL, unpublished data (2007)

### Proposed Model



Dynamic Structure

5.7 Å

4.2Å

•

- Uncomplexed phospholipid
   Phospholipid in complex
   Uncomplexed cholesterol
  - Cholesterol in complex

# Structural Signature of Displacement Effects



#### DPPC:HD:DChol



# Presence of DPPC:HD and DPPC:DChol peaks

| DPPC:HD:DChol | Pressure<br>(mN/m) | d-spacing (Å) | Coherence<br>length (Å) | Integrated<br>intensity<br>(a.u) |
|---------------|--------------------|---------------|-------------------------|----------------------------------|
| 100:0:0       | 15                 | -             | -                       | -                                |
|               | 40                 | 4.31, 4.57    | 150, 50                 | ?                                |
| 0.100.0       | 15                 | 4.19          | 850                     | ?                                |
| 0.100.0       | 40                 | 4.17          | 620                     | ?                                |
| 0.0.100       | 25                 | 5.71          | 63.1                    | 1.7                              |
| 0.0.100       | 35                 | 5.72          | 75.5                    | 1.5                              |
|               | 15                 | 4.65          | 27.0                    | 0.9                              |
| 70:10:20      | 25                 | 4.37, 4.88    | 35.4, 43.3              | 1.6, 0.3                         |
|               | 40                 | 4.30          | 33.3                    | 3.5                              |
|               | 15                 | 4.27, 4.46,   | 311.6, 71.1,            | 0.1, 0.4,                        |
|               | 13                 | 4.80          | 35.4                    | 0.4                              |
| 70:20:10      | 25                 | 4.25, 4.36,   | 311.6, 81.4,            | 0.2, 0.4,                        |
|               |                    | 4.76          | 30.0                    | 0.6                              |
|               | 40                 | 4.25, 4.42    | 71.1, 56.8              | 2.8, 0.3                         |
|               | 15                 | 4.26, 4.42,   | 569, 78.4,              | 0.1, 0.5,                        |
|               | 13                 | 4.76          | 39.1                    | 0.4                              |
| 50:30:20      | 25                 | 4.27, 4.49,   | 68.6, 56.7,             | 0.9, 0.4,                        |
|               |                    | 4.77          | 33.0                    | 0.5                              |
|               | 40                 | 4.25, 4.52    | 56.7, 33.3              | 1.7, 0.9                         |
|               | 15                 | 4.25, 4.39    | 504.9, 130.9            | 0.5, 1.0                         |
| 50 40 10      | 25                 | 4.25, 4.30,   | 1042.2,                 | 0.3, 2.0,                        |
| 50:40:10      |                    | 4.62          | 114.7, 51.6             | 0.4                              |
|               | 40                 | 4.19, 4.22    | 1042.2, 63.1            | 0.6, 3.0                         |

### Conclusions from X-ray Scattering Study

- Intermediate d-spacing provides evidence for cholesterol:phospholipid intermediate structures
- Reduced coherence lengths
  - => nanoscale domains
  - => dynamic structures
- Signatures of PC/HD and PC/DChol complexes observed in ternary mixtures

### Four Different Approaches

- Phase diagrams
- Cholesterol desorption by cyclodextrin (CD)
- X-ray diffraction and x-ray reflectivity
- Effect of "inhibiting" and "promoting" sterols on cholesterol activity in RBC

### Probing Free Cholesterol in RBC

- Cholesterol oxidase can oxidize cholesterol
   -> causes the production of cholestenone only if there is excess (free) cholesterol available
  - Cholesterol oxidase depends on chemical activity of cholesterol
- The amount of cholestenone can be quantified by GC-FID

### "Inhibiting" and "Promoting" Sterols





Observed phase diagram of micronscale liquid immiscibility region in GUVs at 30°C.

Separation of Liquid Phases in Giant Vesicles of Ternary Mixtures of Phospholipids and Cholesterol Sarah L. Veatch and Sarah L. Keller

Phase Behavior of Lipid Monolayers Containing DPPC and Cholesterol Analogs Benjamin L. Stottrup and Sarah L. Keller

## "Inhibiting" and "Promoting" Sterols



Cholestane

Coprostanol



Solid domains



Veatch, Keller et al. 2005

How does immiscibility correlates with active cholesterol?

### Hypotheses:

- Domains imply/require complex
- Lack of domains <u>does not imply</u> no complex
- Complex is necessary but not sufficient for domain phase separation
- Displacement of cholesterol by intercalators signifies complexation of intercalator with phospholipids, giving rise to free cholesterol *intercalators* <==> cholesterol mimics

# Structures Exist Below and Above Liquid-Liquid Immiscibility Line



### **Temperature Dependence**



### "Inhibiting" and "Promoting" Sterols

### If our hypotheses are correct:

- should always observe active cholesterol with promoter sterols
- could still observe active cholesterol even with inhibitor sterols
- What would disprove our hypotheses?
  - If we observe no active cholesterol in case of promoter sterols
  - This would mean that domains do not imply/depend upon complex formation

### Testing for Cholestenone



### Effect of Sterol Enrichment



# Displacement Observed for "Promoting" and "Inhibiting" Sterols



# "Inhibiting" and "Promoting" Sterols Promoting Cell Lysis

#### Dihydrocholesterol (P)



#### Ergosterol (P)



#### Cholestenone (I)



Epicholesterol (P)



### Conclusions from RBC Study

- Tested all "promoting" sterols
  - All promoted cholestenone production and cell lysis by cholesterol oxidase
    - All displace cholesterol: produced free cholesterol available for cholesterol oxidase
- Cholesterol can exist in two states: bound to phospholipids and free

## Conclusions

- 2 different states of cholesterol when present in lipid mixtures:
  - inactive (bound to lipid)
  - o active (free)
- Production of active (free) cholesterol is possible even when actual cholesterol content is low but with alcohol present
- Alcohol displaces cholesterol from complexes and makes it available for cyclodextrin even with cholesterol content in the *alpha region*
- No cholesterol: quasi-long range order
- With cholesterol: very short-range order (coherence length ~ 22 Å); no pressure dependence
- Packing of phospholipid/cholesterol "complexes" depends on cholesterol content
- "Inhibiting" and "Promoting" sterols both can displace cholesterol

### Acknowledgments



- Ted Steck (U of Chicago) and Yvonne Lange (Rush)
- Jarek Majewski (LANL)
- Kristian Kjaer (Niels Bohr Inst.)
- MKR: Burroughs Wellcome Fellowship (MKR),
- YTCK: Trinity College, Cambridge, the Oxbridge Society of Hong Kong, and the Jardines Scholarship

NSF-MCB Packard Foundation NSF-CRIF BW1 beamline at Hasylab,

DESY, Germany

# Structural Signature of Displacement Effects



#### DPPC:HD:DChol



# Presence of DPPC:HD and DPPC:DChol peaks

| DPPC:HD:DChol | Pressure<br>(mN/m) | d-spacing (Å) | Coherence<br>length (Å) | Integrated<br>intensity<br>(a.u) |
|---------------|--------------------|---------------|-------------------------|----------------------------------|
| 100:0:0       | 15                 | -             | -                       | -                                |
|               | 40                 | 4.31, 4.57    | 150, 50                 | ?                                |
| 0.100.0       | 15                 | 4.19          | 850                     | ?                                |
| 0.100.0       | 40                 | 4.17          | 620                     | ?                                |
| 0.0.100       | 25                 | 5.71          | 63.1                    | 1.7                              |
| 0.0.100       | 35                 | 5.72          | 75.5                    | 1.5                              |
|               | 15                 | 4.65          | 27.0                    | 0.9                              |
| 70:10:20      | 25                 | 4.37, 4.88    | 35.4, 43.3              | 1.6, 0.3                         |
|               | 40                 | 4.30          | 33.3                    | 3.5                              |
|               | 15                 | 4.27, 4.46,   | 311.6, 71.1,            | 0.1, 0.4,                        |
|               | 13                 | 4.80          | 35.4                    | 0.4                              |
| 70:20:10      | 25                 | 4.25, 4.36,   | 311.6, 81.4,            | 0.2, 0.4,                        |
|               |                    | 4.76          | 30.0                    | 0.6                              |
|               | 40                 | 4.25, 4.42    | 71.1, 56.8              | 2.8, 0.3                         |
|               | 15                 | 4.26, 4.42,   | 569, 78.4,              | 0.1, 0.5,                        |
|               | 13                 | 4.76          | 39.1                    | 0.4                              |
| 50:30:20      | 25                 | 4.27, 4.49,   | 68.6, 56.7,             | 0.9, 0.4,                        |
|               |                    | 4.77          | 33.0                    | 0.5                              |
|               | 40                 | 4.25, 4.52    | 56.7, 33.3              | 1.7, 0.9                         |
|               | 15                 | 4.25, 4.39    | 504.9, 130.9            | 0.5, 1.0                         |
| 50 40 10      | 25                 | 4.25, 4.30,   | 1042.2,                 | 0.3, 2.0,                        |
| 50:40:10      |                    | 4.62          | 114.7, 51.6             | 0.4                              |
|               | 40                 | 4.19, 4.22    | 1042.2, 63.1            | 0.6, 3.0                         |